Abstract

National and international governments are in the process of establishing testing programs and strategies to assess the safety of currently used chemicals with regard to their potential to interact with the endocrine system of man and wildlife, resulting in potential impacts on reproduction, growth, and/or development. Specifically, the USA, Japan, EU, and OECD have established testing approaches and regulatory frameworks with aim to assess the risks associated with chemicals that have endocrine disrupting properties (EDCs). While there has been a large amount of efforts over the past two decades in context with the assessment of chemical safety, no comparable attempts to harmonize and mutually accept testing strategies and decision-making criteria for environmental monitoring and assessment exist to date for EDCs. In fact, many of the current environmental programs such as the European Water Framework Directive (WFD) or the US Clean Water Act do not explicitly test for EDCs, and considering the unique requirements and endpoints required to assess the endocrine potential of a sample, these programs are unlikely to appropriately address exposure to these chemicals. This is of great concern since EDCs are ubiquitous in the environment, especially in aquatic ecosystems. One of most important sources for EDCs in the environment is the effluent from sewage treatment plants. Many EDCs such as the natural and synthetic estrogens 17β-estradiol and 17α-ethinylestradiol, respectively, are not completely removed with conventional wastewater treatment systems. In recognition of these concerns, in Europe, there is increasing pressure to further develop advanced wastewater treatment methods, such as ozonation and activated carbon treatment for a broad application in municipal wastewater treatment. Another issue is the continuing lack of understanding of the environmental relevance of the phenomenon of ED. A great number of studies have been conducted to describe potential ED in wild and laboratory animals. Most of these studies relied on biomarkers of estrogenicity such as vitellogenin induction in males and mild histological alterations (e.g. occurrence of testicular oocytes), and to date - with few exceptions - no convincing evidence of population relevant impacts of exposure to EDC in the wild exist. In conclusion, while there has been a great deal of research and efforts in context with the hazard assessment and regulation of EDCs, there is still a large number of remaining uncertainties and issues. These range from animal rights concerns due to significant increases in the use of animals to fulfill testing requirements, associated needs for alternative testing concepts such as in vitro, in silico, and modeling approaches, lack of understanding of the relevance of the exposure of man and wildlife to EDCs, and the need for inclusion of EDCs in current environmental programs such as the WFD. In this article we attempted to summarize the current state-of-the-art of regulatory and scientific approaches in context with EDCs, and to identify issues and future needs to address current shortcomings in the field.

Highlights

  • Since the middle of the 1990 s, there has been increasing awareness and concern regarding the exposure to chemicals that have the potential to interfere with the endocrine system, and may cause health effects in people and wildlife

  • The past two decades have witnessed a significant increase in efforts to improve and harmonize strategies and approaches to assess the risks of endocrine disruptive chemicals (EDCs) to humans and the environment

  • Through Organization for Economic Cooperation and Development (OECD)’s joint Endocrine Disrupters Testing and Assessment (EDTA) working group a global platform for the harmonization and general acceptance of tests to assess the potential of chemicals to interact with the endocrine system has been generated

Read more

Summary

Background

Since the middle of the 1990 s, there has been increasing awareness and concern regarding the exposure to chemicals that have the potential to interfere with the endocrine system, and may cause health effects in people and wildlife. While there have been multiple efforts at the national and international level to develop testing and regulatory approaches EDCs in context with chemical risk assessment, no such efforts have been undertaken in context with environmental risk assessments, effluent testing and the evaluation of drinking water safety and agricultural practices Programs such as the European WFD (EC 2000/60/EG) or the US Clean Water Act do not explicitly test for EDCs, and considering the unique requirements and endpoints required to assess the endocrine potential of a sample, these programs are unlikely to appropriately address exposure to these chemicals. This is of great concern since recent studies revealed the relevance EDCs may have in aquatic ecosystem. Risk assessment strategies, there is urgent need for establishing tools and approaches that enable the characterization and evaluation of EDC effects in invertebrates

Conclusions
Findings
52. Weil M
55. Leusch F
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call