Abstract

The pollution of water sources by endocrine disrupting compounds (EDCs) and pharmaceutical and personal care products (PPCPs) is a growing concern, as conventional municipal wastewater treatment systems are not capable of completely removing these contaminants. A continuous stir tank reactor incorporating a modified polyacrylonitrile (PAN) catalyst and dosed with hydrogen peroxide in a heterogeneous Fenton’s process was used at pilot scale to remove these compounds from wastewater that has undergone previous treatment via a conventional wastewater treatment system. The treatment system was effective at ambient temperature and at the natural pH of the wastewater. High levels of both natural and synthetic hormones (EDCs) and PPCPs were found in the effluent after biological treatment of the wastewater. The treatment system incorporating the modified PAN catalyst/H2O2decomposed >90% of the EDCs and >40% of PPCPs using 200 mgL−1H2O2, 3 hr residence time. The estrogenic potency EE2-EQ was removed by 82.77%, 91.36%, and 96.13% from three different wastewater treatment plants. BOD was completely removed (below detection limits); 30%–40% mineralisation was achieved and turbidity reduced by more than 68%. There was a <4% loss in iron content on the catalyst over the study period, suggesting negligible leaching of the catalyst.

Highlights

  • Endocrine disrupting compounds (EDCs) which include natural sex hormones such as estrone—E1 and 17 β-estradiol— E2 produced by humans and animals as well as some synthetic estrogens such as 17 α-ethinylestradiol (EE2) used for contraception purposes are able to produce endocrine disruption in living organisms at trace concentrations [1, 2]

  • Several studies have shown that most conventional municipal treatment plants are capable of removing only 27% of micropollutants to below detection limits; up to 64% of micropollutants are removed by less than 50% and 9% are not removed at all International Journal of Chemical Engineering

  • This study aims to examine the effectives of the heterogeneous PAN catalyst/H2O2 at a pilot scale, towards the removal of selected EDCs and pharmaceutical and personal care products (PPCPs) from pretreated municipal wastewater

Read more

Summary

Introduction

Endocrine disrupting compounds (EDCs) which include natural sex hormones such as estrone—E1 and 17 β-estradiol— E2 produced by humans and animals as well as some synthetic estrogens such as 17 α-ethinylestradiol (EE2) used for contraception purposes are able to produce endocrine disruption in living organisms at trace concentrations (nanogram per litre levels) [1, 2]. EDCs have been attributed as a cause of reproductive disturbance in humans and wildlife such as feminisation of fish, developmental abnormalities, and demasculinisation of alligators [3]. Pharmaceutical products such as antibiotics, blood lipid regulators, analgesics, nonsteroidal anti-inflammatory drugs, antidepressants, antiepileptics, impotence drugs, tranquilizers, and many personal care products such as fragrances, soaps, preservatives, and disinfectants (generally called pharmaceutical and personal care products (PPCPs)) have different modes of action, toxicity, and effects on nontarget organisms [4]. ECDs and PPCPs have been detected in effluents of sewage treatment plants (STPs) in different countries at concentrations of up to 70 ngL−1 for E1, 64 ngL−1 for E2, and 42 ngL−1 for EE2 and 6.3 μgL−1 for carbamazepine, 2.7 μgL−1 for triclosan, and 53 μgL−1 for aspirin [1, 5, 6], suggesting that conventional treatment methods are not efficient in removing low level EDCs and PPCPs

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call