Abstract

Brain-derived neurotrophic factor (BDNF) plays a critical role in modulating plasticity in sensory cortices. Indeed, a BDNF-dependent long-term potentiation (LTP) at distal basal excitatory synapses of Layer 5 pyramidal neurons (L5PNs) has been demonstrated in disinhibited rat barrel cortex slices. Although it is well established that this LTP requires the pairing of excitatory postsynaptic potentials (PSPs) with Ca2+ spikes, its induction when synaptic inhibition is working remains unexplored. Here we show that low-frequency stimulation at basal dendrites of L5PNs is able to trigger a PSP followed by an action potential (AP) and a slow depolarization (termed PSP-Ca2+ response) in thalamocortical slices without blocking synaptic inhibition. We demonstrate that AP barrage-mediated release of endocannabinoids (eCBs) from the recorded L5PNs induces PSP-Ca2+ response facilitation and BDNF-dependent LTP. Indeed, this LTP requires the type 1 cannabinoid receptors activation, is prevented by postsynaptic intracellular 1,2-bis(2-aminophenoxy) ethane-N,N,N,N'-tetraacetic acid (BAPTA) or the anandamide membrane transporter inhibitor AM404, and only occurs in L5PNs neurons showing depolarization-induced suppression of inhibition. Additionally, electrical stimulation at the posteromedial thalamic nucleus induced similar response and LTP. These results reveal a novel form of eCB-dependent LTP at L5PNs that could be relevant in the processing of sensory information in the barrel cortex.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call