Abstract

In experiments on transversal slices of the dorsal hippocampus of rats, we found that low-frequency stimulation of the mossy fibers (MF) against the background of pre-settled long-term post-tetanic potentiation in the MF-CA3 pyramidal neuron (PN) dendrites synaptic system evoked depotentiation in all studied slices. Depotentiation was considerably decreased by a non-competitive blocker of the NMDA glutamate receptors, ketamine (100 μM), as well as by an inhibitor of calmodulin, trifluoroperazine (10 μM), and an inhibitor of calcineurin, cyclosporin A (250 μM). At the same time, depontentiation was not changed by 50 μM polymixin B, an inhibitor of protein kinase C. Long-term potentiation of synaptic transmission in the Schaffer collaterals (SchC)-CA1 PN dendrites system, which was evoked by 2.5-min-long anoxia/aglycemia episodes, resulted exclusively from enhancement of the NMDA component of population EPSP, while their AMPA component was not modified, i.e., in this case potentiation was of a postsynaptic nature. Under these conditions, low-frequency stimulation of SchC resulted in a further increase in the intensity of synaptic transmission due to increases in both the NMDA and AMPA components of population EPSP. The above form of potentiation could be suppressed by 100 μM ketamine, 10 μM trifuoroperazine, 250 μM cyclosporin A, or 10 μM N-nitro-L-arginine. Weak (near-threshold) high-frequency stimulation of SchC induced long-lasting potentiation of synaptic transmission due to an isolated increase in the AMPA component of population EPSP, i.e., this potentiation was of a postsynaptic nature. In the latter case, low-frequency SchC stimulation resulted in further facilitation of synaptic transmission. Intensive tetanic high-frequency stimulation of the above fibers induced long-term potentiation of a presynaptic nature, while their low-frequency stimulation depotentiated synaptic transmission.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call