Abstract
AbstractCopper(0)‐mediated radical polymerization (single electron transfer‐living radical polymerization) is an efficient polymerization technique that allows control over the polymerization of acrylates, vinyl chloride and other monomers, yielding bromide terminated polymer. In this contribution, we investigate the evolution of the end‐group fidelity at very high conversion both in the presence and in the absence of initially added copper (II) bromide (CuBr2). High resolution electrospray‐ionization mass spectroscopy (ESI‐MS) allows determination of the precise chemical structure of the dead polymers formed during the polymerization to very high monomer conversion, including post polymerization conditions. Two different regimes can be identified via ESI‐MS analysis. During the polymerization, dead polymer results mainly from termination via disproportionation, whereas at very high conversion (or in the absence of monomer, that is, post‐polymerization), dead polymers are predominantly generated by chain transfer reactions (presumably to ligand). The addition of CuBr2 significantly reduces the extent of termination by both chain transfer and disproportionation, at very high monomer conversion and under post‐polymerization conditions, offering a convenient approach to maintaining high end‐group fidelity in Cu(0)‐mediated radical polymerization. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Polymer Science Part A: Polymer Chemistry
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.