Abstract

A very fast and controlled atom transfer radical (co)polymerization (ATRP) of acrylates, methacrylates, styrene, and vinyl chloride is reported in a single dipolar aprotic solvent, sulfolane, with the use of ppm amount of the copper catalyst. The observed rates of polymerization (kpapp) of the monomers studied are similar to those reported using dimethyl sulfoxide (DMSO) and other polar solvents typically employed in single electron transfer (SET)-mediated atom transfer radical polymerization (ATRP) processes. As proof-of-concept, ABA type block copolymers of polystyrene-b-poly(vinyl chloride)-b-polystyrene and poly(methyl acrylate)-b-poly(vinyl chloride)-b-poly(methyl acrylate) were prepared for the first time using a reversible deactivation radical polymerization (RDRP) method in a single solvent. The quantitative preservation of halide chain-ends was confirmed by 1H NMR and MALDI-TOF analysis as well as by the complete shift of the GPC traces. The results presented establish an innovative and robust system to afford a vast portfolio of (co)polymers in a single widely used industrial solvent.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.