Abstract

AbstractAimWhy are some species geographically restricted? Ecological explanations suggest that endemic species may have restricted distributions because limited phenotypic variability results in narrow niches. However, studying variability of traits independently may not fully explain the interactions within and between complex phenotypes and environments. Here, we hypothesize that endemic species are restricted to a narrow range of habitats due to strong phenotypic integration (i.e. strong correlations among traits), strong environmental integration (i.e. strong correlations among the environments occupied) and strong correlations among trait–environment combinations.LocationThe Kerguelen Islands, sub‐Antarctic.MethodsWe measured flowering phenology, multiple morphological characters, and species distribution along three abiotic environmental gradients (elevation, soil moisture and soil salinity) in 14 plant species whose distributions range from strictly endemic to cosmopolitan.ResultsWe found that for individual species, trait means and variances were independent of endemism, but that endemics occupied higher and less variable microhabitats. However, phenotypic integration, environmental integration along the three gradients, and the strength of trait–environment correlations all increased with the level of species endemism.Main conclusionsHigher levels of integration within and between phenotypes and environments are associated with more restricted geographical ranges in the species studied. In endemic species phenotypic integration may explain range contraction during the taxon cycle and reduce the ability to adapt to novel microhabitats formed as a result of environmental change.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call