Abstract

This paper investigates the effect of relay randomness on the end-to-end throughput in multihop wireless networks using stochastic geometry. We model the nodes as Poisson Point Processes and calculate the spatial average of the throughput over all potential geometrical patterns of the nodes. More specifically, for problem tractability, we first start with the simple nearest neighbor (NN) routing protocol, and analyze the end-to-end throughput so as to obtain a performance benchmark. Next, note that the ideal equal-distance routing is generally not realizable due to the randomness in relay distribution, we propose a quasi-equal-distance (QED) routing protocol. We derive the range for the optimal hop distance, and select the relays to formulate a quasi-equidistant deployment. We analyze the end-to-end throughput both with and without intra-route resource reuse. Our analysis indicates that: (i) The throughput performance of the proposed QED routing can achieve a significant performance gain over that of the NN routing. As the relay intensity gets higher, the performance of QED routing converges to that of the equidistant routing. (ii) If the node intensity is a constant over the network, then intra-route resource reuse is always beneficial when the routing distance is sufficiently large. (iii) With randomly distributed relays, the communication distance can generally be extended. However, due to the uncertainty in relay distribution, long distance communication is generally not feasible with random relays. This implies that the existence of a reasonably defined infrastructure is critical in effective long distance communication. Our analysis is demonstrated through numerical examples.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call