Abstract

The class of Gupta-Kumar results give the asymptotic throughput in multi-hop wireless networks but cannot predict the throughput behavior in networks of typical size. This paper addresses the non-asymptotic analysis of the multihop wireless communication problem and provides, for the first time, closed-form results on multi-hop throughput and delay distributions. The results are non-asymptotic in that they hold for any number of nodes and also fully account for transient regimes, i.e., finite time scales, delays, as well as bursty arrivals. Their accuracy is supported by the recovery of classical single-hop results, and also by simulations from empirical data sets with realistic mobility settings. Moreover, for a specific network scenario and a fixed pair of nodes, the results confirm Gupta-Kumar's Ω(1√(n log n)) asymptotic scaling law.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.