Abstract

Learning-based methods have demonstrated clear advantages in controlling robot tasks, such as the information fusion abilities, strong robustness, and high accuracy. Meanwhile, the on-board systems of robots have limited computation and energy resources, which are contradictory with state-of-the-art learning approaches. They are either too lightweight to solve complex problems or too heavyweight to be used for mobile applications. On the other hand, training spiking neural networks (SNNs) with biological plausibility has great potentials of performing fast computation and energy efficiency. However, the lack of effective learning rules for SNNs impedes their wide usage in mobile robot applications. This paper addresses the problem by introducing an end to end learning approach of spiking neural networks for a lane keeping vehicle. We consider the reward-modulated spike-timing-dependent-plasticity (R-STDP) as a promising solution in training SNNs, since it combines the advantages of both reinforcement learning and the well-known STDP. We test our approach in three scenarios that a Pioneer robot is controlled to keep lanes based on an SNN. Specifically, the lane information is encoded by the event data from a neuromorphic vision sensor. The SNN is constructed using R-STDP synapses in an all-to-all fashion. We demonstrate the advantages of our approach in terms of the lateral localization accuracy by comparing with other state-of-the-art learning algorithms based on SNNs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.