Abstract

Silicon on Insulator (SOI) device technology has been shown to be capable of functioning satisfactorily at operating temperatures of >200°C. Most of the applications to date have required performance for short times (<2,000 hours) at the highest operating temperatures of up to 225°C in down-well drilling applications. There is interest in extending the endurance of high temperature electronics into aero-engine and other applications where a minimum 20 year operating life is stipulated. In order to gain confidence in high temperature electronics that can meet this requirement, accurate reliability data are needed and end of life failure modes need to be identified. Most of the reliability data on the high temperature endurance of the integrated circuit is generated with little consideration of the packaging technologies, whilst most of the reliability data pertinent to high temperature packaging technologies uses test pieces rather than devices, which limits any conclusions relating to long term electrical performance. This paper presents results of temperature storage and cycling endurance studies on SOI devices combined with high temperature packaging technologies relevant to signal conditioning and processing functions for sensors in down-well and aero-engine applications. The endurance studies have been carried out for up to 11,088 hours at 250°C, with functioning devices being tested periodically at room temperature, 125°C and 250°C and rapid thermal cycling from −40°C to +225°C. Different die attach and wire bond options have been included in the study and the performance of several functional blocks on the SOI device has been tracked over the endurance tests. The failure modes observed on completion of the endurance tests include die cracking and deterioration of the device bond pads accelerated due to degradation of some die attach materials. The routes to achieving stable long term performance of packaged devices at temperatures of 250°C will be outlined.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call