Abstract
Not long ago, protists were considered one of four eukaryote kingdoms, but recent gene-based phylogenies show that they contribute to all nine eukaryote subdomains. The former kingdoms of animals, plants and fungi are now relegated to lower ranks within subdomains. Most unicellular protists respond to adverse conditions by differentiating into dormant walled cysts. As cysts, they survive long periods of starvation, drought and other environmental threats, only to re-emerge when conditions improve. For protists pathogens, the resilience of their cysts can prevent successful treatment or eradication of the disease. In this context, effort has been directed towards understanding the molecular mechanisms that control encystation. We here firstly summarize the prevalence of encystation across protists and next focus on Amoebozoa, where most of the health-related issues occur. We review current data on processes and genes involved in encystation of the obligate parasite Entamoeba histolytica and the opportunistic pathogen Acanthamoeba. We show how the cAMP-mediated signalling pathway that controls spore and stalk cell encapsulation in Dictyostelium fruiting bodies could be retraced to a stress-induced pathway controlling encystation in solitary Amoebozoa. We highlight the conservation and prevalence of cAMP signalling genes in Amoebozoan genomes and the suprisingly large and varied repertoire of proteins for sensing and processing environmental signals in individual species.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.