Abstract
In this work, the concept of peer-to-peer energy sharing in wildlife communication systems is explored. In this context, wild animals can share energy wirelessly besides their data communications as they opportunistically come into range of each other. Our goal is to find a way to balance the energy among the nodes and minimize this energy loss. We propose a novel encounter-based energy-sharing scheme, called EBES, that utilizes single and multi-hop transmission to achieve energy balance, minimize energy losses, and maximize the lifetime of the wildlife communication system. EBES is based on a variety of parameters, including the amount of energy left in the system and the nodes’ encounter rate, and buffer sizes. In the simulation studies, we considered a wildlife communication network that is involved in data communication and applied EBES over the opportunistic routing protocols such as EBR, Spray&Wait, and Epidemic resulting in a network lifetime increase of 35% and improving the routing protocols performance. Additionally, we compared EBES with the other well-known energy balancing techniques that also contribute to data communication such as EA-Epidemic, EERPFAnt, and OE-OLSR and the results show the remaining energy was improved by 31%, 26%, and 15%, respectively.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.