Abstract

It is common for search and optimization problems to have alternative equivalent encodings in ASP. Typically none of them is uniformly better than others when evaluated on broad classes of problem instances. We claim that one can improve the solving ability of ASP by using machine learning techniques to select encodings likely to perform well on a given instance. We substantiate this claim by studying the hamiltonian cycle problem. We propose several equivalent encodings of the problem and several classes of hard instances. We build models to predict the behavior of each encoding, and then show that selecting encodings for a given instance using the learned performance predictors leads to significant performance gains.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.