Abstract
We present a neurorobotic framework to investigate tactile information processing at the early stages of the somatosensory pathway. We focus on spatiotemporal coding of first and second order responses to Braille stimulation, which offers a suitable protocol to investigate the neural bases of fine touch discrimination. First, we model Slow Adaptive type I fingertip mechanoreceptor responses to Braille characters sensed both statically and dynamically. We employ a network of spiking neurones to transduce analogue skin deformations into primary spike trains. Then, we model second order neurones in the cuneate nucleus (CN) of the brainstem to study how mechanoreceptor responses are possibly processed prior to their transmission to downstream central areas. In the model, the connectivity layout of mechanoreceptor-to-cuneate projections produces a sparse CN code. To characterise the reliability of neurotransmission we employ an information theoretical measure accounting for the metrical properties of spiking signals. Our results show that perfect discrimination of primary and secondary responses to a set of 26 Braille characters is achieved within 100 and 500 ms of stimulus onset, in static and dynamic conditions, respectively. Furthermore, clusters of responses to different stimuli are better separable after the CN processing. This finding holds for both statically and dynamically delivered stimuli. In the presented system, when sliding the artificial fingertip over a Braille line, a speed of 40 − 50 mm/s is optimal in terms of rapid and reliable character discrimination. This result is coherent with psychophysical observations reporting average reading speeds of 30 − 40 ± 5 mm/s adopted by expert Braille readers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.