Abstract
We show how to encode, by classical structures, both the objects and the morphisms of the category of complete metric spaces and uniformly continuous maps. The result is a category of, what we call, cognate metric spaces and cognate maps. We show this category relativizes to all models of set theory (unlike the category of complete metric spaces and uniformly continuous maps). We extend this encoding to an encoding of complete metric structures by classical structures. This provide us with a general technique for translating results about infinitary logic on classical structures to the setting of infinitary continuous logic on continuous structures. Our encoding will also allow us to talk about not only the relations between complete metric structures, but also the potential relations between complete metric structures, i.e. those which are satisfied in some larger model of set theory. For example we will show that given any two complete metric structures we can determine if they are potentially isomorphic by looking at any admissible set which contains them both.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.