Abstract

By a model of set theory we mean a Boolean-valued model of Zermelo-Fraenkel set theory allowing atoms (ZFA), which contains a copy of the ordinary universe of (two-valued,pure) sets as a transitive subclass; examples include Scott-Solovay Boolean-valued models and their symmetric submodels, as well as Fraenkel-Mostowski permutation models. Any such model M can be regarded as a topos. A logical subtopos E of M is said to represent M if it is complete and its cumulative hierarchy, as defined by Fourman and Hayashi, coincides with the usual cumulative hierarchy of M. We show that, although M need not be a complete topos, it has a smallest complete representing subtopos, and we describe this subtopos in terms of definability in M. We characterize, again in terms of definability, those models M whose smallest representing topos is a Grothendieck topos. Finally, we discuss the extent to which a model can be reconstructed when its smallest representing topos is given.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call