Abstract
A novel machine learning paradigm, i.e., enclosing machine learning based on regular geometric shapes was proposed. First, it adopted regular minimum volume enclosing and bounding geometric shapes (sphere, ellipsoid, box) or their unions and so on to obtain one class description model. Second, Data description, two class classification, learning algorithms based on the one class description model were presented. The most obvious feature was that enclosing machine learning emphasized one class description and learning. To illustrate the concepts and algorithms, a minimum volume enclosing ellipsoid (MVEE) case for enclosing machine learning was then investigated in detail. Implementation algorithms for enclosing machine learning based on MVEE were presented. Subsequently, we validate the performances of MVEE learners using real world datasets. For novelty detection, a benchmark ball bearing dataset is adopted. For pattern classification, a benchmark iris dataset is investigated. The performance results show that our proposed method is comparable even better than Support Vector Machines (SVMs) in the datasets studied.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.