Abstract

Chaos-based image encryption schemes are applied widely for their cryptographic properties. However, chaos and cryptographic relations remain a challenge. The chaotic systems are defined on the set of real numbers and then normalized to a small group of integers in the range 0–255, which affects the security of such cryptosystems. This paper proposes an image encryption system developed using deep learning to realize the secure and efficient transmission of medical images over an insecure network. The non-linearity introduced with deep learning makes the encryption system secure against plaintext attacks. Another limiting factor for applying deep learning in this area is the quality of the recovered image. The application of an appropriate loss function further improves the quality of the recovered image. The loss function employs the structure similarity index metric (SSIM) to train the encryption/decryption network to achieve the desired output. This loss function helped to generate cipher images similar to the target cipher images and recovered images similar to the originals concerning structure, luminance and contrast. The images recovered through the proposed decryption scheme were high-quality, which was further justified by their PSNR values. Security analysis and its results explain that the proposed model provides security against statistical and differential attacks. Comparative analysis justified the robustness of the proposed encryption system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.