Abstract
Efficient CO2 reduction with earth-abundant photocatalysts is a highly attractive but very challenging process for chemists. Herein, we synthesized an indium-porphyrin framework, In(H2TCPP)(1-n)[Fe(TCPP)(H2O)](1-n)[DEA](1-n) (In-FenTCPP-MOF; H2TCPP = tetrakis(4-benzoic acid)porphyrine; DEA = diethylamine), with a porphyrin ring supporting the single-site iron for the high-performance visible-light-driven conversion of CO2 to CO. A high CO yield of 3469 μmol g-1 can be achieved by a 24 h photocatalytic reaction with a high CO selectivity (ca. 99.5%). This activity was much higher than that of its cobalt analogues or the Fe-free indium-based metal-organic framework (MOF). Systematic experimental and theoretical studies indicate that the porphyrin-supported iron centers in the MOF matrix serve as efficient active sites, which can accept electrons from the photoexcited MOFs in order to mediate CO2 reduction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.