Abstract
Use of light is considered an effective approach to convert CO2 into usable chemical energy. In the present study, an iron- and nickel-containing bimetallic metal-organic framework (MOF) was synthesized via a simple solvothermal route. SnO2 was then composited with the said MOF, and the obtained material was calcined and annealed to fabricate a series of nanophotocatalysts. The annealed sample displayed superior photocatalytic activity to the calcined sample, possibly due to the carbon-nitrogen layer formed after annealing mediating the charge-transfer process. The results of photocatalytic experiments indicated that using [Ru(bpy)3]Cl2·6H2O as a photosensitizer and triethanolamine (TEOA) and acetonitrile (MeCN) as sacrificial agents, the catalyst sample was annealed at 450 °C (NiFe2O4@N/C/SnO2-450) to afford the highest CO yield from CO2 (2057.41 μmol g-1 h-1). The increase in the photocatalytic ability of the nanocomposites is basically attributed to multiple synergistic effects between NiFe2O4 and SnO2, which reduce the recombination probability of the photo-induced electrons and holes. Ultimately, a photocatalytic reaction mechanism is proposed for NiFe2O4@N/C/SnO2 in the reduction of CO2.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.