Abstract
Transparent conductive electrodes are essential in the application of flexible electronics. In this work, we successfully demonstrated a novel strategy for improving mechanical/electrical properties of indium tin oxide (ITO)-free flexible silver nanowire (Ag NW) thin films. To reduce the contact resistance of Ag NWs, an ethanol-mist was used to weld the cross junction of wires at room temperature. The nano-welded Ag NWs (W-Ag NWs) were then coated with an aluminum-doped ZnO (AZO) solution, which significantly reduce the roughness of the Ag NW thin film. Finally, an ultrathin SbOx thin film of 2 nm was deposited on the film surface using a water-free low-temperature atomic layer deposition technique to protect the W-Ag NW/AZO layer from water or oxygen degradation. The treated Ag NWs have a high transmittance of 87% and a low sheet resistance of about 15 Ω/sq, which is comparable with the ITO electrode's property. After 1000 cycles of bending testing, the W-Ag NW/AZO/SbOx film practically retains its initial conductivity. Furthermore, the samples were immersed in a solution with pH values ranging from 3 to 13 for 5 min. When compared to untreated Ag NWs or those coated with AlOx thin films, W-Ag NW/AZO/SbOx had superior electrical stability. The W-Ag NW/AZO/SbOxlayer was integrated as a gate electrode on low-power operating flexible Ti-ZnO thin film transistors (TFTs). The 5% Ti-ZnO TFT has a field-effect mobility of 19.7 cm2 V s−1, an Ion/Ioff ratio of 107, and a subthreshold swing of 147 mV decade−1.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.