Abstract

The performance of an ionic liquid with an aprotic heterocyclic anion (AHA-IL), trihexyl(tetradecyl)phosphonium 2-cyanopyrrolide ([P66614][2-CNPyr]), for CO2 capture has been evaluated considering both the thermodynamics and the kinetics of the phenomena. Absorption gravimetric measurements of the gas-liquid equilibrium isotherms of CO2-AHA-IL systems were carried out from 298 to 333 K and at pressures up to 15 bar, analyzing the role of both chemical and physical absorption phenomena in the overall CO2 solubility in the AHA-IL, as has been done previously. In addition, the kinetics of the CO2 chemical absorption process was evaluated by in situ Fourier transform infrared spectroscopy-attenuated total reflection, following the characteristic vibrational signals of the reactants and products over the reaction time. A chemical absorption model was used to describe the time-dependent concentration of species involved in the reactive absorption, obtaining kinetic parameters (such as chemical reaction kinetic constants and diffusion coefficients) as a function of temperatures and pressures. As expected, the results demonstrate that the CO2 absorption rate is mass-transfer-controlled because of the relatively high viscosity of AHA-IL. The AHA-IL was encapsulated in a porous carbon sphere (Encapsulated Ionic Liquid, ENIL) to improve the kinetic performance of the AHA-IL for CO2 capture. The newly synthesized AHA-ENIL material was evaluated as a CO2 sorbent with gravimetric absorption measurements. AHA-ENIL systems preserve the good CO2 absorption capacity of the AHA-IL but drastically enhance the CO2 absorption rate because of the increased gas-liquid surface contact area achieved by solvent encapsulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.