Abstract

Encapsulated metal nanostructures were prepared using the powerful pulsed discharge method. Metal nanorods were obtained in porous titania and alumina matrix by direct electrodeposition from 1-ethyl-3-methylimidazolium chloride-based ionic liquids. The deposition process was characterized by cyclic voltammetry. Morphology of the encapsulated structures was studied by scanning electron microscope (SEM) and energy dispersive spectrometer (EDS) for morphological and elemental analysis. It was found that the most efficient method for electrodeposition of pure aluminum into titania nanotubes is the potential cycling method, while for deposition of the Al-Ti alloy in alumina pores a pulsed method with three different steps is preferable. Closing the titania nanotubes was found to be possible both with empty and metal-filled pores, whereas in alumina matrix this procedure can be performed only when pores are filled with a conductive material. The obtained results throw light on the mechanism of porous film encapsulation under high-voltage pulses and allow preparing encapsulated nanostructures in the oxide films.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.