Abstract

In this work, we demonstrate a novel solid-state electrochemiluminescence (ECL) sensor based on the Ru(bpy)32+@terbium-guanosine monophosphate infinite coordination polymer network ((Ru(bpy)32+@Tb-GMP ICPn). Comparing with the traditional luminescence of Ru(bpy)32+ observed in a liquid system, the proposed method of encapsulating Ru(bpy)32+ into ICPn for immobilization greatly improves the ECL signal and efficiency, which is attributed to the unique porous structure and large specific surface area of ICPn. Moreover, the solid-state Ru(bpy)32+ ECL sensor has good biocompatibility and low toxicity. Taking histamine (HA) as a detection model, a good linear relationship between ECL intensity and logarithm of HA concentration was obtained with a low detection limit of 17 nM, and satisfactory results were obtained for detecting HA levels in fish samples as well. The proposed solid-state Ru(bpy)32+ ECL sensor has great application prospects in the safety of food.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call