Abstract

Composite materials with multifunctional properties usually possess synergetic effects in catalysis toward cascade reactions. In this work, a facile strategy to the encapsulation of octahedral Cu2 O nanocrystals (NCs) by metal-organic frameworks (MOFs) is reported, and an oriented growth of MOF enclosures (namely, HKUST-1) around Cu2 O NCs with desired feedstock ratio is achieved. The strategy defines the parameter range that precisely controls the etching rate of metal oxide and the MOF crystallization rate. Finally, the Cu@HKUST-1 composites with uniform morphology and controlled MOF thickness have been successfully fabricated after the reduction of Cu2 O to Cu NCs in HKUST-1. The integration of Cu NCs properties with MOF advantages helps to create a multifunctional catalyst, which exhibits cooperative catalytic activity and improved recyclability toward the one-pot cascade reactions under mild conditions involving visible-light irradiation. The superior performance can be attributed to the plasmonic photothermal effect of Cu NCs, while HKUST-1 shell provides Lewis acid sites, substrates and H2 enrichment, and stabilizes the Cu cores.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.