Abstract

A subtle change in the ligand structure, replacing the carbonyl oxygen with sulfur in simple alpha-amino acid amides, resulted in a dramatic activity and selectivity improvement in the rhodium- or ruthenium-catalyzed reduction of ketones under hydrogen transfer conditions. In addition, in most cases, a switch of the product's absolute configuration was observed on going from amides to the corresponding thioamides. Under optimized conditions, we obtained the secondary alcohol products in high yield and enantioselectivity (up to 97% ee) using only 0.25 mol % catalyst loading. [structure: see text]

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.