Abstract

The asymmetric dihydroxylation of olefins by osmium tetroxide is one of the most useful reactions in organic synthesis. Apart from the enormous experimental work, an extensive theoretical effort has been applied to study this reaction. A vast number of computational methods like QM, MM, Q2MM, QM/MM, and those commonly applied to enzymatic studies like docking, Molecular Dynamics (MD) and Genetic Algorithms (GA) have been employed. The computational studies performed to date in order to understand the mechanism of this reaction are reviewed here, with special focus on those directed to study the origin of the high enantioselectivity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call