Abstract
We report an enantioselective protein affinity selection mass spectrometry screening approach (EAS-MS) that enables the detection of weak binders, informs about selectivity, and generates orthogonal confirmation of binding. After method development with control proteins, we screened 31 human proteins against a designed library of 8,210 chiral compounds. 16 binders to 12 targets, including many proteins predicted to be "challenging to ligand", were discovered and confirmed in orthogonal assays. 7 binders to 6 targets bound in an enantioselective manner, with K D s ranging from 3 to 20 µM. Binders for four targets (DDB1, WDR91, WDR55, and HAT1) were selected for in-depth characterization using X-ray crystallography. In all four cases, the mechanism for enantioselective selectivity was readily explained. EAS-MS can be used to identify and characterize selective and weakly-binding ligands for novel protein targets with unprecedented throughput and sensitivity.
Submitted Version
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have