Abstract

The development of automated, high-throughput organic synthesis and screening techniques has created an urgent demand for methods that rapidly determine the enantiomeric composition of chiral compounds. Enantioselective fluorescent sensors offer the potential for real-time, high-sensitivity techniques for determining enantiomeric data in high-throughput chiral assays. In this Account, we describe a range of fluorescent sensors derived from 1,1'-bi-2-naphthol (BINOL), a readily available biaryl compound with axial chirality. We show that BINOL can be used to construct structurally diverse, chiral fluorescent sensors to carry out highly enantioselective, sensitive recognition of chiral amino alcohols, α-hydroxycarboxylic acids, and amino acid derivatives. For example, we prepared an (S)-BINOL derivative whose 3,3'-positions are attached to two chiral amino alcohol units, each having two phenyl substituents. This compound shows a fluorescence enhancement of 950-fold in the presence of (S)-mandelic acid but very little change in the presence of (R)-mandelic acid. It also allows the enantiomers of this α-hydroxycarboxylic acid to be visually discriminated by an enantioselective precipitation process. A structurally similar (S)-BINOL-amino alcohol molecule, but with three rather than two phenyl substitutents in each of the two amino alcohol units, was found to exhibit generally enantioselective fluorescence responses toward structurally diverse α-hydroxycarboxylic acids. We further prepared a pseudoenantiomeric analogue of this compound from (R)-H(8)BINOL, which has the opposite chiral configuration at both the biaryl center as well as the pendant amino alcohols. These two compounds have opposite enantioselectivity in the recognition of a chiral substrate, with distinctly different fluorescence emission wavelengths. By mixing them together, we developed a pseudoenantiomeric sensor pair to facilitate chiral assays. Using this pseudoenantiomeric sensor pair allows both the concentration and the enantiomeric composition of a substrate to be determined in a single fluorescence measurement. We synthesized another compound by ligating a terpyridine unit to BINOL and found that coordination of a Cu(II) ion to the terpyridine unit almost completely quenched its fluorescence. Displacement of the Cu(2+) ion from this complex by chiral amino alcohols leads to enantioselective fluorescence enhancement. This BINOL-terpyridine-Cu(II) complex also exhibits enantioselective gel collapsing in the presence of chiral amino alcohols, providing a new visual chiral discrimination method. When a series of light-absorbing conjugated units are attached to the BINOL structure, the resulting multiarmed dendritic molecules show greatly amplified fluorescence responses. Thus, the light harvesting effect of dendrimers can be used to greatly increase the sensitivity of the fluorescent sensors. The progress described here demonstrates that highly enantioselective and sensitive fluorescent sensors can be obtained through a systematic investigation of the structure-property relation between the sensors and the substrates. These sensors show great potential for the development of rapid assays of chiral organic compounds.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.