Abstract

The enantiomeric excess of chiral reagents used in asymmetric syntheses directly affects the reaction selectivity and product purity. In this work, 84 of the more recently available chiral compounds were evaluated to determine their actual enantiomeric composition. These compounds are widely used in asymmetric syntheses as chiral synthons, catalysts, and auxiliaries. These include chiral alcohols, amines, amino alcohols, amides, carboxylic acids, epoxides, esters, ketones, and oxolanes among other classes of compounds. All enantiomeric test results were categorized within five impurity levels (i.e., <0.01%, 0.01–0.1%, 0.1–1%, 1–10%, and >10%). The majority of the reagents tested were determined to have enantiomeric impurities over 0.01%, and two of them were found to contain enantiomeric impurities exceeding the 10% level. The most effective enantioselective analysis method was a GC approach using a Chiraldex GTA chiral stationary phase (CSP). This method worked exceedingly well with chiral amines and alcohols.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call