Abstract

Lignin is nature's second most abundant polymer and displays a largely unexploited renewable resource for value-added bio-production. None of the lignin-based fermentation processes so far managed to use guaiacol (2-methoxy phenol), the predominant aromatic monomer in depolymerized lignin. In this work, we describe metabolic engineering of Amycolatopsis sp. ATCC 39116 to produce cis,cis-muconic acid (MA), a precursor of recognized industrial value for commercial plastics, from guaiacol. The microbe utilized a very broad spectrum of lignin-based aromatics, such as catechol, guaiacol, phenol, toluene, p-coumarate, and benzoate, tolerated them in elevated amounts and even preferred them over sugars. As a next step, we developed a novel approach for genomic engineering of this challenging, GC-rich actinomycete. The successful introduction of conjugation and blue-white screening, using β-glucuronidase, enabled tailored genomic modifications within ten days. Successive deletion of two putative muconate cycloisomerases from the genome provided the mutant Amycolatopsis sp. ATCC 39116 MA-2, which accumulated 3.1gL-1 MA from guaiacol within 24h, achieving a yield of 96%. The mutant was found also capable to produce MA from a guaiacol-rich true lignin hydrolysate, obtained from pine through hydrothermal conversion. This provides an important proof-of-concept to successfully coupling chemical and biochemical process steps into a value chain from the lignin polymer to an industrial chemical. In addition, Amycolatopsis sp. ATCC 39116 MA-2 was able to produce 2-methyl MA from o-cresol (2-methyl phenol), which opens possibilities towards polymers with novel architecture and properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call