Abstract
Triferroic compounds are the ideal platform for multistate information devices but are rare in the two-dimensional (2D) form, and none of them can maintain macroscopic order at room temperature. Herein, we propose a general strategy for achieving 2D triferroicity by imposing electric polarization into a ferroelastic magnet. Accordingly, dual transition-metal dichalcogenides, for example, 1T'-CrCoS4, are demonstrated to display room-temperature triferroicity. The magnetic order of 1T'-CrCoS4 undergoes a magnetic transition during the ferroic switching, indicating robust triferroic magnetoelectric coupling. In addition, the negative out-of-plane piezoelectricity and strain-tunable magnetic anisotropy make the 1T'-CrCoS4 monolayer a strong candidate for practical applications. Following the proposed scheme, a new class of 2D room-temperature triferroic materials is introduced, providing a promising platform for advanced spintronics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.