Abstract
Studies show that while the cortical mechanisms of two-dimensional (2D) form and motion processing are similar in touch and vision, the mechanisms of three-dimensional (3D) shape processing are different. 2D form and motion are processed in areas 3b and 1 of SI cortex by neurons with receptive fields (RFs) composed of excitatory and inhibitory subregions. 3D shape is processed in area 2 and SII and relies on the integration of cutaneous and proprioceptive inputs. The RFs of SII neurons vary in size and shape with heterogeneous structures consisting of orientation-tuned fingerpads mixed with untuned excitatory or inhibitory fingerpads. Furthermore, the sensitivity of the neurons to cutaneous inputs changes with hand conformation. We hypothesize that these RFs are the kernels underlying tactile object recognition.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.