Abstract

Rechargeable batteries based upon sodium (Na+) cations are at the core of many new battery chemistries beyond Li-ion batteries. Rather than using carbon or alloy-based anodes, the direct utilization of solid sodium metal as an anode would be highly advantageous, but its use has been highly problematic due to its high reactivity. In this work, it is demonstrated that, by tailoring the electrolyte formulation, solid Na metal can be electrochemically plated/stripped at ambient temperature with high efficiency (>99%) on both copper and inexpensive aluminum current collectors thereby enabling a shift in focus to new battery chemical couples based upon Na metal operating at ambient temperature. These highly concentrated electrolytes have enabled excellent cycling stability of Na metal batteries using Na metal anode and Na3V2(PO4)3 cathode at high rates with very high efficiency.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.