Abstract
High-level reasoning can be defined as the capability to generalize over knowledge acquired via experience, and to exhibit robust behavior in novel situations. Such form of reasoning is a basic skill in humans, who seamlessly use it in a broad spectrum of tasks, from language communication to decision making in complex situations. When it manifests itself in understanding and manipulating the everyday world of objects and their interactions, we talk about common sense or commonsense reasoning. State-of-the-art AI systems don’t possess such capability: for instance, Large Language Models have recently become popular by demonstrating remarkable fluency in conversing with humans, but they still make trivial mistakes when probed for commonsense competence; on a different level, performance degradation outside training data prevents self-driving vehicles to safely adapt to unseen scenarios, a serious and unsolved problem that limits the adoption of such technology. In this paper we propose to enable high-level reasoning in AI systems by integrating cognitive architectures with external neuro-symbolic components. We illustrate a hybrid framework centered on ACT-R, and we discuss the role of generative models in recent and future applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.