Abstract

Understanding commonsense reasoning is one of the core challenges of AI. We are exploring an approach inspired by cognitive science, called analogical chaining, to create cognitive systems that can perform commonsense reasoning. Just as rules are chained in deductive systems, multiple analogies build upon each other’s inferences in analogical chaining. The cases used in analogical chaining – called common sense units – are small, to provide inferential focus and broader transfer. Importantly, such common sense units can be learned via natural language instruction, thereby increasing the ease of extending such systems. This paper describes analogical chaining, natural language instruction via microstories, and some subtleties that arise in controlling reasoning. The utility of this technique is demonstrated by performance of an implemented system on problems from the Choice of Plausible Alternatives test of commonsense causal reasoning.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.