Abstract

Sharing health data is vital in advancing medical research and transforming knowledge into clinical practice. Meanwhile, protecting the privacy of data contributors is of paramount importance. To that end, several privacy approaches have been proposed to protect individual data contributors in data sharing, including data anonymization and data synthesis techniques. These approaches have shown promising results in providing privacy protection at the dataset level. In this work, we study the privacy challenges in enabling fine-grained privacy in health data sharing. Our work is motivated by recent research findings, in which patients and healthcare providers may have different privacy preferences and policies that need to be addressed. Specifically, we propose a novel and effective privacy solution that enables data curators (e.g., healthcare providers) to protect sensitive data elements while preserving data usefulness. Our solution builds on randomized techniques to provide rigorous privacy protection for sensitive elements and leverages graphical models to mitigate privacy leakage due to dependent elements. To enhance the usefulness of the shared data, our randomized mechanism incorporates domain knowledge to preserve semantic similarity and adopts a block-structured design to minimize utility loss. Evaluations with real-world health data demonstrate the effectiveness of our approach and the usefulness of the shared data for health applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.