Abstract

Molecular communication via diffusion (MCvD) is inherently an energy efficient transportation paradigm, which requires no external energy during molecule propagation. Inspired by the fact that the emitted molecules have a finite probability to reach the receiver, this letter introduces an energy efficient scheme for the information molecule synthesis process of MCvD via a simultaneous molecular information and energy transfer (SMIET) relay. With this SMIET capability, the relay can decode the received information as well as generate its emission molecules using its absorbed molecules via chemical reactions. To reveal the advantages of SMIET, approximate closed-form expressions for the bit error probability and the synthesis cost of this two-hop molecular communication system are derived and then validated by particle-based simulation. Interestingly, by comparing with a conventional relay system, the SMIET relay system can be shown to achieve a lower minimum bit error probability via molecule division, and a lower synthesis cost via molecule type conversion or molecule division.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.