Abstract
Internet of Bio-Nano Things, (IoBNT), is an ecosystem, where integration of micro and nano scale devices designed via synthetic biology communicates information. One of the communication concepts adopted in IoBNT is molecular communications via diffusion (MCvD). Inter-symbol interference (ISI) is a major cause of the performance degradation in MCvD systems. The accurate determination of the bit error probability (BEP) when ISI is present is therefore important. Most of the past literature has used the normal approximation to a binomial distribution to evaluate the approximate BEP in MCvD systems. In this paper, we derive a new expression to evaluate the exact BEP without using a normal or any other approximation when the ISI caused by a bit extends over an arbitrary number of future bit intervals. Our BEP expression applies to any receiver, full or partial absorbing, as long as its hitting probability distribution is known. In order to prove the applicability of the new expression, we present the numerical results for the BEP computed using our expression for a full absorption spherical receiver and compare them with the results obtained by particle-based simulations. Our results agree closely with the simulation results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.