Abstract
Optimization is needed for effective decision based design (DBD). However, a utility function assessed a priori in DBD does not usually capture the preferences of the decision maker over the entire design space. As a result, when the optimizer searches for the optimal design, it traverses (or ends up) in regions where the preference order among different solutions is different from the actual order. For a highly non-convex design space, this can lead to convergence to a grossly suboptimal design depending on the initial design. In this article, we propose two approaches to alleviate this issue. First, we map the trajectory of the solution as generated by the optimizer and generate ranking questions that are presented to the designer to verify the correctness of the utility function. We then propose backtracking rules if a local utility function is very different from the initially assessed function. We demonstrate our methodology using a mathematical example and a welded beam design problem.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.