Abstract

We present a method to model photonic components in Verilog-A by introducing bidirectional signaling through a single port. To achieve this, the concept of power waves and scattering parameters from electromagnetism are employed. As a consequence, one can simultaneously transmit forward and backward propagating waves on a single wire while also capturing realistic, measurement-backed responses of photonic components in Verilog-A. We demonstrate examples to show the efficacy of the proposed technique in accounting for critical effects in photonic integrated circuits such as Fabry-Perot cavity resonance, reflections to lasers, reflection cancellation circuits, etc. Our solution makes electronic-photonic co-simulation more intuitive and accurate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.