Abstract

Magnetic resonance is considered to be a necessary condition for metamaterial perfect absorbers, and dual-band absorbers can be composed of a pair of metallic layers with anti-parallel surface currents. We designed and fabricated a tunable dual-band perfect absorber based on extraordinary-optical-transmission (EOT) effect and Fabry-Perot cavity resonance. The idea and the mechanism are completely different from the absorber based on the near-field interaction. The important advantage of our structure is that we can switch a single-band absorber to a dual-band absorber by changing the distance between two metallic layers and/or incident angle. The peak originating from the EOT effect becomes significantly narrower, resulting in an increase of the Q-factor from 16.88 to 49. The dual-band absorber can be optimized to be insensitive to the polarization of the incident electromagnetic wave by slightly modifying the absorber structure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call