Abstract

Radiative communication using electro-magnetic (EM) fields amongst the wearable and implantable devices act as the backbone for information exchange around a human body, thereby enabling prime applications in the fields of connected healthcare, electroceuticals, neuroscience, augmented and virtual reality. However, owing to such radiative nature of the traditional wireless communication, EM signals propagate in all directions, inadvertently allowing an eavesdropper to intercept the information. In this context, the human body, primarily due to its high water content, has emerged as a medium for low-loss transmission, termed human body communication (HBC), enabling energy-efficient means for wearable communication. However, conventional HBC implementations suffer from significant radiation which also compromises security. In this article, we present Electro-Quasistatic Human Body Communication (EQS-HBC), a method for localizing signals within the body using low-frequency carrier-less (broadband) transmission, thereby making it extremely difficult for a nearby eavesdropper to intercept critical private data, thus producing a covert communication channel, i.e. the human body. This work, for the first time, demonstrates and analyzes the improvement in private space enabled by EQS-HBC. Detailed experiments, supported by theoretical modeling and analysis, reveal that the quasi-static (QS) leakage due to the on-body EQS-HBC transmitter-human body interface is detectable up to <0.15 m, whereas the human body alone leaks only up to ~0.01 m, compared to >5 m detection range for on-body EM wireless communication, highlighting the underlying advantage of EQS-HBC to enable covert communication.

Highlights

  • Radiative communication using electro-magnetic (EM) fields amongst the wearable and implantable devices act as the backbone for information exchange around a human body, thereby enabling prime applications in the fields of connected healthcare, electroceuticals, neuroscience, augmented and virtual reality

  • The main goal of performing the experiments is to analyze if the body itself leaks information during the electro-quasistatic human body communication (EQS-HBC)

  • Capacitive EQS-HBC shows lower channel loss than the galvanic HBC over long distances in the body, and our experiments are with capacitive EQS-HBC

Read more

Summary

Introduction

Radiative communication using electro-magnetic (EM) fields amongst the wearable and implantable devices act as the backbone for information exchange around a human body, thereby enabling prime applications in the fields of connected healthcare, electroceuticals, neuroscience, augmented and virtual reality Owing to such radiative nature of the traditional wireless communication, EM signals propagate in all directions, inadvertently allowing an eavesdropper to intercept the information. Future advancements of societally critical applications such as connected healthcare, electroceuticals, neuroscience, augmented and virtual reality rely on small form-factor wearables[1,2], implantables, injectables, ingestibles, and other on-body internet-connected devices, triggering the need for energy-efficient and secure mechanisms for information exchange[3]. NB-HBC is more energy-efficient than WBAN, the EM nature of communication radiates significant amount of signal outside the body, not maintaining the data privacy

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.