ACS Applied Materials & Interfaces | VOL. 12

Enabling a Large Accessible Surface Area of a Pore-Designed Hydrophilic Carbon Nanofiber Fabric for Ultrahigh Capacitive Deionization

Publication Date Oct 23, 2020


Although porous carbons have been widely used for capacitive deionization, the low accessible surface area because of the hydrophobic microporous structure results in unsatisfied desalination capacity, which drastically hinders their practical application. Herein, a novel carbon nanofiber fabric with a large accessible surface area was prepared by electrospinning using the uniformly dispersed ferrocene as a pore former. The carbon nanofiber fabric with good mechanical strength and flexibility can be directly used as a filter membrane to filter simulated sandy seawater. The high content of heteroatoms increases the surface polarity of the carbon nanofiber, while the well-controlled interconnected mesoporous structure of the optimized sample facilitates fast transport and adsorption of hydrated Na+ and Cl-. Thus, the hydrophilic carbon nanofiber fabric shows a Brunauer-Emmett-Teller surface area of 922 m2 g-1 and a large accessible surface area of 405 m2 g-1, leading to a high capacitance of 263 F g-1 in the NaCl electrolyte. Most importantly, it shows an ultrahigh desalination capacity of 19.34 mg g-1, which is much higher than most of the previously reported carbon materials. The high desalination capacity, fast adsorption rate, and good cycle stability make the as-prepared carbon nanofiber fabric an attractive candidate for practical application.

Powered ByUnsilo

Carbon Nanofiber Fabric
Desalination Capacity
Large Accessible Surface Area
High Desalination Capacity
Hydrophilic Nanofiber
Large Surface Area
Capacitive Deionization
Good Mechanical Strength
Accessible Surface
NaCl Electrolyte

Introducing Weekly Round-ups!Beta

Powered by R DiscoveryR Discovery

Round-ups are the summaries of handpicked papers around trending topics published every week. These would enable you to scan through a collection of papers and decide if the paper is relevant to you before actually investing time into reading it.

Climate change Research Articles published between May 09, 2022 to May 15, 2022

R DiscoveryMay 16, 2022
R DiscoveryArticles Included:  2

Introduction: Climate change is a pervasive threat to global biodiversity and is expected to have profound effects on the resilience and abundance of ...

Read More

Coronavirus Pandemic

You can also read COVID related content on R COVID-19

R ProductsCOVID-19


Creating the world’s largest AI-driven & human-curated collection of research, news, expert recommendations and educational resources on COVID-19

COVID-19 Dashboard