Abstract
In this paper, multiresponsive actuators based on asymmetric design of graphene-conjugated poly(3,4-ethylene dioxythiophene): poly(styrenesulfonate) (PEDOT:PSS) gradient films have been developed by a simple drop casting method. The biomimetic actuation is attributed to the hygroscopic expansion property of PEDOT:PSS and the gradient distribution of graphene sheets within the film, which resembles the hierarchical swelling tissues of some plants in nature. Graphene-conjugated PEDOT:PSS (GCP) actuators exhibit reversible bending behavior under multistimuli such as moisture, organic vapor, electrothermal, and photothermal heating. Noticeably, the bending curvature reaches 2.15 cm-1 under applied voltage as low as 1.5 V owing to the high electrical conductivity of GCP actuator. To mimic the motions of nyctinastic plants, a GCP artificial flower that spreads its petals under sunlight illumination has been fabricated. GCP actuators have been also demonstrated as intelligent light-controlled switches for light-emitting diodes and smart curtains for thermal management. Not only do the GCP gradient films exhibit potential applications in flexible electronics and energy harvesting/storage devices but also the facile fabrication of multiresponsive GCP actuators may shed light on the development of soft robotics, artificial muscles, wearable electronics, and smart sensors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.