Abstract

Economical and abundant natural biological materials provide a low-cost and scalable approach to develop next-generation flexible and wearable electronics. Herein, a universal strategy of nature-inspired and amine-promoted metallization, namely, NIAPM, is presented to make high-quality metals for electronics fabrication. The introduction of poly(ethyleneimine) (PEI) significantly shortens the time of metallization from >48 h to ≈6 h, and the phenol compounds (TP) from green tea make metals bond tightly on all demonstrated surfaces. The as-made thin metal films of Cu and Ni feature high conductivity (∼1.0 Ω/□), excellent mechanical stability and flexibility even at the bending radius of ∼1 mm. Moreover, NIAPM is compatible with typical lithography techniques for fabricating metallic patterns, showing considerable potential applications in flexible electronics. As a proof-of-concept, two devices based on melamine-templated Cu sponges are first prepared for detecting the change of external pressure with a resistance sensitivity of 18.1 kPa-1 and collecting high-viscosity crude oil, respectively. Then, a high-performance bendable solid supercapacitor is demonstrated using as-prepared Ni metallized fabrics and the activated porous carbon from the recycled waste in NIPAM as flexible electrodes, which possesses comparable areal capacitance of 45.5 F·g-1, and energy density of 7.88 Wh·g-1 at the power density of 35 W·g-1. Therefore, it is anticipated that such a time-saving, cost-effective and whole solution-processed NIAPM strategy can inspire further practical applications in the fields of surface chemistry, material science, flexible and wearable electronics, etc.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call