Abstract

We show that for a class of quantum light spectroscopy (QLS) experiments using n = 0, 1, 2, ··· classical light pulses and an entangled photon pair (a biphoton state) where one photon acts as a reference without interacting with the matter sample, identical signals can be obtained by replacing the biphotons with classical-like coherent states of light, where these are defined explicitly in terms of the parameters of the biphoton states. An input-output formulation of quantum nonlinear spectroscopy is used to prove this equivalence. We demonstrate the equivalence numerically by comparing a classical pump-quantum probe experiment with the corresponding classical pump-classical probe experiment. This analysis shows that understanding the equivalence between entangled biphoton probes and carefully designed classical-like coherent state probes leads to quantum-inspired classical experiments that yield equivalent signals and provides insights for the future design of QLS experiments that could provide a true quantum advantage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.