Abstract

Particle‐jamming soft grippers demonstrate notable shape adaptability and adjustable stiffness, which improve their grasping efficiency. However, integrating tactile sensing into these grippers presents challenges due to the specific properties of the particle jamming mechanism. This study introduces a parallel particle jamming soft gripper equipped with tactile sensing capabilities. The gripper consists of two tactile sensing particle jamming pads (TSPJPs) that are integrated with flexible optoelectronic skins. These skins are made of silicone rubber membranes and are embedded with a 3 × 3 array of stretchable optical waveguide arrays (SOWAs). Testing indicates that incorporating these sensors enhances the gripper's tactile sensing capabilities, with minimal impact on its particle jamming‐based grasping function. A single TSPJP can accurately detect various contact points and estimate the contract forces. The proposed soft gripper can reliably grasp a wide range of objects, varying in shape, hardness, and weight, and it provides detailed tactile feedback on contact locations and the intensity of the grasping through the SOWA sensor. It can precisely distinguish between different grasping postures using a light gradient boosting machine (LightGBM) learning model. Furthermore, it can effectively detect the slippage of grasped objects, facilitating accurate closed‐loop control for secure manipulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.