Abstract
One of the persistent challenges in crisis detection is inferring actionable information to support emergency response. Existing methods focus on situational awareness but often lack actionable insights. This study proposes a holistic approach to implementing an actionability extraction system on social media, including requirement gathering, selection of machine learning tasks, data preparation, and integration with existing resources, providing guidance for governments, civil services, emergency workers, and researchers on supplementing existing channels with actionable information from social media. Our solution leverages an actionability schema and domain-adaptive pre-training, improving upon the state-of-the-art model by 5.5 % and 10.1 % in micro and macro F1 scores.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have